Part Number Hot Search : 
MAX9718 0T012 2N1883 BZ5260 XC2VP70 SR10150 MX25L12 UM17735
Product Description
Full Text Search
 

To Download MJE18004D2 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  high speed, high gain bipolar npn power transistor with integrated collector-emitter diode and built-in efficient antisaturation network the MJE18004D2 is stateofart high speed high gain bipolar transistor (h2bip). high dynamic characteristics and lot to lot minimum spread ( 150 ns on storage time) make it ideally suitable for light ballast applications. therefore, there is no need to guarantee an h fe window. main features: ? low base drive requirement ? high peak dc current gain (55 typical) @ i c = 100 ma ? extremely low storage time min/max guarantees due to the h2bip structure which minimizes the spread ? integrated collectoremitter free wheeling diode ? fully characterized and guaranteed dynamic v ce(sat) ? a6 sigmao process providing tight and reproductible parameter spreads it's characteristics make it also suitable for pfc application. ????????????????????????????????? ????????????????????????????????? maximum ratings ????????????????? ????????????????? rating ??????? ??????? symbol ???????? ???????? value ???? ???? unit ????????????????? ????????????????? collectoremitter sustaining voltage ??????? ??????? v ceo ???????? ???????? 450 ???? ???? vdc ????????????????? ????????????????? collectorbase breakdown voltage ??????? ??????? v cbo ???????? ???????? 1000 ???? ???? vdc ????????????????? ????????????????? collectoremitter breakdown voltage ??????? ??????? v ces ???????? ???????? 1000 ???? ???? vdc ????????????????? ????????????????? emitterbase voltage ??????? ??????? v ebo ???????? ???????? 12 ???? ???? vdc ????????????????? ? ??????????????? ? ????????????????? collector current e continuous collector current e peak (1) ??????? ? ????? ? ??????? i c i cm ???????? ? ?????? ? ???????? 5 10 ???? ? ?? ? ???? adc ????????????????? ? ??????????????? ? ????????????????? base current e continuous base current e peak (1) ??????? ? ????? ? ??????? i b i bm ???????? ? ?????? ? ???????? 2 4 ???? ? ?? ? ???? adc ????????????????? ????????????????? *total device dissipation @ t c = 25  c *derate above 25 c ??????? ??????? p d ???????? ???????? 75 0.6 ???? ???? watt w/  c ????????????????? ????????????????? operating and storage temperature ??????? ??????? t j , t stg ???????? ???????? 65 to 150 ???? ????  c ????????????????????????????????? ????????????????????????????????? thermal characteristics ????????????????? ? ??????????????? ? ????????????????? thermal resistance e junction to case thermal resistance e junction to ambient ??????? ? ????? ? ??????? r q jc r q ja ???????? ? ?????? ? ???????? 1.65 62.5 ???? ? ?? ? ????  c/w ????????????????? ? ??????????????? ? ????????????????? maximum lead temperature for soldering purposes: 1/8 from case for 5 seconds ??????? ? ????? ? ??????? t l ???????? ? ?????? ? ???????? 260 ???? ? ?? ? ????  c (1) pulse test: pulse width = 5 ms, duty cycle 10%. on semiconductor  ? semiconductor components industries, llc, 2002 april, 2002 rev. 3 1 publication order number: MJE18004D2/d MJE18004D2 power transistors 5 amperes 1000 volts 75 watts case 221a09 to220ab style 1: pin 1. base 2. collector 3. emitter 4. collector 1 2 3 4
MJE18004D2 http://onsemi.com 2 electrical characteristics (t c = 25 c unless otherwise noted) ??????????????????? ??????????????????? characteristic ????? ????? symbol ??? ??? min ???? ???? typ ???? ???? max ??? ??? unit ????????????????????????????????? ????????????????????????????????? off characteristics ??????????????????? ? ????????????????? ? ??????????????????? collectoremitter sustaining voltage (i c = 100 ma, l = 25 mh) ????? ? ??? ? ????? v ceo(sus) ??? ? ? ? ??? 450 ???? ? ?? ? ???? 547 ???? ? ?? ? ???? ??? ? ? ? ??? vdc ??????????????????? ??????????????????? collectorbase breakdown voltage (i cbo = 1 ma) ????? ????? v cbo ??? ??? 1000 ???? ???? 1100 ???? ???? ??? ??? vdc ??????????????????? ? ????????????????? ? ??????????????????? emitterbase breakdown voltage (i ebo = 1 ma) ????? ? ??? ? ????? v ebo ??? ? ? ? ??? 12 ???? ? ?? ? ???? 14 ???? ? ?? ? ???? ??? ? ? ? ??? vdc ??????????????????? ? ????????????????? ? ??????????????????? collector cutoff current (v ce = rated v ceo , i b = 0) ????? ? ??? ? ????? i ceo ??? ? ? ? ??? ???? ? ?? ? ???? ???? ? ?? ? ???? 100 ??? ? ? ? ??? m adc ??????????????? ? ????????????? ? ??????????????? collector cutoff current (v ce = rated v ces , v eb = 0) collector cutoff current (v ce = 500 v, v eb = 0) ????? ? ??? ? ????? @ t c = 25 c @ t c = 125 c @ t c = 125 c ????? ? ??? ? ????? i ces ??? ? ? ? ??? ???? ? ?? ? ???? ???? ? ?? ? ???? 100 500 100 ??? ? ? ? ??? m adc ??????????????????? ? ????????????????? ? ??????????????????? emittercutoff current (v eb = 10 vdc, i c = 0) ????? ? ??? ? ????? i ebo ??? ? ? ? ??? ???? ? ?? ? ???? ???? ? ?? ? ???? 100 ??? ? ? ? ??? m adc ????????????????????????????????? ????????????????????????????????? on characteristics ??????????????? ? ????????????? ? ??????????????? baseemitter saturation voltage (i c = 0.8 adc, i b = 80 madc) ????? ? ??? ? ????? @ t c = 25 c @ t c = 125 c ????? ? ??? ? ????? v be(sat) ??? ? ? ? ??? ???? ? ?? ? ???? 0.8 0.7 ???? ? ?? ? ???? 1 0.9 ??? ? ? ? ??? vdc ??????????????? ? ????????????? ? ??????????????? (i c = 2 adc, i b = 0.4 adc) ????? ? ??? ? ????? @ t c = 25 c @ t c = 125 c ????? ? ??? ? ????? ??? ? ? ? ??? ???? ? ?? ? ???? 0.9 0.8 ???? ? ?? ? ???? 1 0.9 ??? ? ? ? ??? ??????????????? ? ????????????? ? ??????????????? collectoremitter saturation voltage (i c = 0.8 adc, i b = 80 madc) ????? ? ??? ? ????? @ t c = 25 c @ t c = 125 c ????? ? ??? ? ????? v ce(sat) ??? ? ? ? ??? ???? ? ?? ? ???? 0.38 0.55 ???? ? ?? ? ???? 0.5 0.75 ??? ? ? ? ??? vdc ??????????????? ? ????????????? ? ??????????????? (i c = 2 adc, i b = 0.4 adc) ????? ? ??? ? ????? @ t c = 25 c @ t c = 125 c ????? ? ??? ? ????? ??? ? ? ? ??? ???? ? ?? ? ???? 0.45 0.75 ???? ? ?? ? ???? 0.75 1 ??? ? ? ? ??? ??????????????? ? ????????????? ? ??????????????? (i c = 0.8 adc, i b = 40 madc) ????? ? ??? ? ????? @ t c = 25 c @ t c = 125 c ????? ? ??? ? ????? ??? ? ? ? ??? ???? ? ?? ? ???? 0.9 1.6 ???? ? ?? ? ???? 1.5 ??? ? ? ? ??? ??????????????? ??????????????? (i c = 1 adc, i b = 0.2 adc) ????? ????? @ t c = 25 c @ t c = 125 c ????? ????? ??? ??? ???? ???? 0.25 0.28 ???? ???? 0.5 0.6 ??? ??? ??????????????? ? ????????????? ? ? ????????????? ? ??????????????? dc current gain (i c = 0.8 adc, v ce = 1 vdc) ????? ? ??? ? ? ??? ? ????? @ t c = 25 c @ t c = 125 c ????? ? ??? ? ? ??? ? ????? h fe ??? ? ? ? ? ? ? ??? 15 10 ???? ? ?? ? ? ?? ? ???? 28 14 ???? ? ?? ? ? ?? ? ???? ??? ? ? ? ? ? ? ??? e ??????????????? ??????????????? (i c = 2 adc, v ce = 1 vdc) ????? ????? @ t c = 25 c @ t c = 125 c ????? ????? ??? ??? 6 4 ???? ???? 8 6 ???? ???? ??? ??? ??????????????? ? ????????????? ? ??????????????? (i c = 1 adc, v ce = 2.5 vdc) ????? ? ??? ? ????? @ t c = 25 c @ t c = 125 c ????? ? ??? ? ????? ??? ? ? ? ??? 18 14 ???? ? ?? ? ???? 28 20 ???? ? ?? ? ???? ??? ? ? ? ??? ????????????????????????????????? ????????????????????????????????? dynamic saturation voltage ???????? ? ?????? ? ???????? d y namic saturation ????? ? ??? ? ????? i c = 1 adc i b1 = 100 ma ???? ? ?? ? ???? @ 1 m s ????? ? ??? ? ????? @ t c = 25 c @ t c = 125 c ????? ? ??? ? ????? v ce(dsat) ??? ? ? ? ??? ???? ? ?? ? ???? 9 16 ???? ? ?? ? ???? ??? ? ? ? ??? v ???????? ? ?????? ? ???????? dynamic saturation voltage: determined 1 m s and 3 m s res p ectively ????? ? ??? ? ????? i b1 = 100 ma v cc = 300 v ???? ? ?? ? ???? @ 3 m s ????? ? ??? ? ????? @ t c = 25 c @ t c = 125 c ????? ? ??? ? ????? ??? ? ? ? ??? ???? ? ?? ? ???? 3.1 9 ???? ? ?? ? ???? ??? ? ? ? ??? ???????? ???????? 3 m s respectively after rising i b1 reaches 90% of final ????? ????? i c = 2 adc i b1 =04a ???? ???? @ 1 m s ????? ????? @ t c = 25 c @ t c = 125 c ????? ????? ??? ??? ???? ???? 11 18 ???? ???? ??? ??? ???????? ? ?????? ? ???????? i b1 ????? ? ??? ? ????? i b1 = 0.4 a v cc = 300 v ???? ? ?? ? ???? @ 3 m s ????? ? ??? ? ????? @ t c = 25 c @ t c = 125 c ????? ? ??? ? ????? ??? ? ? ? ??? ???? ? ?? ? ???? 1.4 8 ???? ? ?? ? ???? ??? ? ? ? ???
MJE18004D2 http://onsemi.com 3 electrical characteristics (t c = 25 c unless otherwise noted) ??????????????????? ??????????????????? characteristic ???? ???? symbol ???? ???? min ???? ???? typ ???? ???? max ??? ??? unit ????????????????????????????????? ????????????????????????????????? diode characteristics ??????????????? ? ????????????? ? ??????????????? forward diode voltage (i ec = 1 adc) ????? ? ??? ? ????? @ t c = 25 c @ t c = 125 c ???? ? ?? ? ???? v ec ???? ? ?? ? ???? ???? ? ?? ? ???? 0.96 0.72 ???? ? ?? ? ???? 1.5 ??? ? ? ? ??? v ??????????????? ? ????????????? ? ??????????????? (i ec = 2 adc) ????? ? ??? ? ????? @ t c = 25 c @ t c = 125 c ???? ? ?? ? ???? ???? ? ?? ? ???? ???? ? ?? ? ???? 1.15 0.8 ???? ? ?? ? ???? 1.7 ??? ? ? ? ??? ??????????????? ? ????????????? ? ??????????????? forward recovery time (i f = 0.4 adc, di/dt = 10 a/ m s) ????? ? ??? ? ????? @ t c = 25 c ???? ? ?? ? ???? t fr ???? ? ?? ? ???? ???? ? ?? ? ???? 440 ???? ? ?? ? ???? ??? ? ? ? ??? ns ??????????????? ??????????????? (i f = 1 adc, di/dt = 10 a/ m s) ????? ????? @ t c = 25 c ???? ???? ???? ???? ???? ???? 335 ???? ???? ??? ??? ??????????????? ??????????????? (i f = 2 adc, di/dt = 10 a/ m s) ????? ????? @ t c = 25 c ???? ???? ???? ???? ???? ???? 335 ???? ???? ??? ??? ????????????????????????????????? ????????????????????????????????? dynamic characteristics ??????????????????? ??????????????????? current gain bandwidth (i c = 0.5 adc, v ce = 10 vdc, f = 1 mhz) ???? ???? f t ???? ???? ???? ???? 13 ???? ???? ??? ??? mhz ??????????????????? ? ????????????????? ? ??????????????????? output capacitance (v cb = 10 vdc, i e = 0, f = 1 mhz) ???? ? ?? ? ???? c ob ???? ? ?? ? ???? ???? ? ?? ? ???? 60 ???? ? ?? ? ???? 100 ??? ? ? ? ??? pf ??????????????????? ? ????????????????? ? ??????????????????? input capacitance (i c = 0.5 adc, v ce = 10 vdc, f = 1 mhz) ???? ? ?? ? ???? c ib ???? ? ?? ? ???? ???? ? ?? ? ???? 450 ???? ? ?? ? ???? 750 ??? ? ? ? ??? pf ????????????????????????????????? ????????????????????????????????? switching characteristics: resistive load (d.c. 10%, pulse width = 40 m s) ???????? ???????? turnon time ???????? ???????? i c = 2.5 adc, i b1 = 0.5 adc i b2 = 1 adc ????? ????? @ t c = 25 c ???? ???? t on ???? ???? ???? ???? 500 ???? ???? 750 ??? ??? ns ???????? ???????? turnoff time ???????? ???????? i b2 = 1 adc v cc = 250 vdc ????? ????? @ t c = 25 c ???? ???? t off ???? ???? 1.1 ???? ???? ???? ???? 1.4 ??? ??? m s ???????? ? ?????? ? ???????? turnon time ???????? ? ?????? ? ???????? i c = 2 adc, i b1 = 0.4 adc i b2 = 1 adc ????? ? ??? ? ????? @ t c = 25 c @ t c = 125 c ???? ? ?? ? ???? t on ???? ? ?? ? ???? ???? ? ?? ? ???? 100 150 ???? ? ?? ? ???? 150 ??? ? ? ? ??? ns ???????? ???????? turnoff time ???????? ???????? i b2 = 1 adc v cc = 300 vdc ????? ????? @ t c = 25 c @ t c = 125 c ???? ???? t off ???? ???? ???? ???? 1.15 1.6 ???? ???? 1.3 ??? ??? m s ???????? ? ?????? ? ???????? turnon time ???????? ? ?????? ? ???????? i c = 2.5 adc, i b1 = 0.5 adc i b2 =05adc ????? ? ??? ? ????? @ t c = 25 c @ t c = 125 c ???? ? ?? ? ???? t on ???? ? ?? ? ???? ???? ? ?? ? ???? 120 500 ???? ? ?? ? ???? 150 ??? ? ? ? ??? ns ???????? ? ?????? ? ???????? turnoff time ???????? ? ?????? ? ???????? i b2 = 0.5 adc v cc = 300 vdc ????? ? ??? ? ????? @ t c = 25 c @ t c = 125 c ???? ? ?? ? ???? t off ???? ? ?? ? ???? 1.85 ???? ? ?? ? ???? 2.6 ???? ? ?? ? ???? 2.15 ??? ? ? ? ??? m s ????????????????????????????????? ????????????????????????????????? switching characteristics: inductive load (v cc = 15 v) ???????? ???????? fall time ???????? ???????? i c = 2.5 adc i 500 ad ????? ????? @ t c = 25 c @ t c = 125 c ???? ???? t f ???? ???? ???? ???? 130 300 ???? ???? 175 ??? ??? ns ???????? ? ?????? ? ???????? storage time ???????? ? ?????? ? ???????? c i b1 = 500 madc i b2 = 500 madc v z = 350 v ????? ? ??? ? ????? @ t c = 25 c @ t c = 125 c ???? ? ?? ? ???? t s ???? ? ?? ? ???? ???? ? ?? ? ???? 2.12 2.6 ???? ? ?? ? ???? 2.4 ??? ? ? ? ??? m s ???????? ? ?????? ? ???????? crossover time ???????? ? ?????? ? ???????? v z = 350 v l c = 300 m h ????? ? ??? ? ????? @ t c = 25 c @ t c = 125 c ???? ? ?? ? ???? t c ???? ? ?? ? ???? ???? ? ?? ? ???? 355 750 ???? ? ?? ? ???? 500 ??? ? ? ? ??? ns ???????? ???????? fall time ???????? ???????? i c = 2 adc i 400 ad ????? ????? @ t c = 25 c @ t c = 125 c ???? ???? t f ???? ???? ???? ???? 95 230 ???? ???? 150 ??? ??? ns ???????? ? ?????? ? ???????? storage time ???????? ? ?????? ? ???????? c i b1 = 400 madc i b2 = 400 madc v z = 300 v ????? ? ??? ? ????? @ t c = 25 c @ t c = 125 c ???? ? ?? ? ???? t s ???? ? ?? ? ???? 2.1 ???? ? ?? ? ???? 2.9 ???? ? ?? ? ???? 2.4 ??? ? ? ? ??? m s ???????? ? ?????? ? ???????? crossover time ???????? ? ?????? ? ???????? v z = 300 v l c = 200 m h ????? ? ??? ? ????? @ t c = 25 c @ t c = 125 c ???? ? ?? ? ???? t c ???? ? ?? ? ???? ???? ? ?? ? ???? 300 700 ???? ? ?? ? ???? 450 ??? ? ? ? ??? ns ???????? ???????? fall time ???????? ???????? i c = 1 adc i 100 ad ????? ????? @ t c = 25 c @ t c = 125 c ???? ???? t f ???? ???? ???? ???? 70 100 ???? ???? 90 ??? ??? ns ???????? ? ?????? ? ???????? storage time ???????? ? ?????? ? ???????? c i b1 = 100 madc i b2 = 500 madc v z = 300 v ????? ? ??? ? ????? @ t c = 25 c @ t c = 125 c ???? ? ?? ? ???? t s ???? ? ?? ? ???? ???? ? ?? ? ???? 0.7 1.05 ???? ? ?? ? ???? 0.9 ??? ? ? ? ??? m s ???????? ? ?????? ? ???????? crossover time ???????? ? ?????? ? ???????? v z = 300 v l c = 200 m h ????? ? ??? ? ????? @ t c = 25 c @ t c = 125 c ???? ? ?? ? ???? t c ???? ? ?? ? ???? ???? ? ?? ? ???? 75 160 ???? ? ?? ? ???? 120 ??? ? ? ? ??? ns
MJE18004D2 http://onsemi.com 4 typical static characteristics figure 1. dc current gain @ 1 volt 100 10 1 10 1 0.1 0.01 0.001 i c , collector current (amps) h fe , dc current gain t j = 125 c t j = 25 c t j = -20 c v ce = 1 v figure 2. dc current gain @ 5 volt 100 10 1 10 1 0.1 0.01 0.001 i c , collector current (amps) h fe , dc current gain t j = 125 c t j = -20 c v ce = 5 v figure 3. collector saturation region 3 2 0 10 1 0.1 0.01 i b , base current (ma) i c = 500 ma figure 4. collectoremitter saturation voltage 10 1 0.1 10 1 0.1 0.01 0.001 i c , collector current (amps) t j = 125 c t j = 25 c t j = -20 c i c /i b = 5 v ce , voltage (volts) v ce , voltage (volts) 1 t j = 25 c 1 a 5 a figure 5. collectoremitter saturation voltage 10 1 0.1 10 0.1 0.01 0.001 i c , collector current (amps) figure 6. collectoremitter saturation voltage 10 1 0.1 10 0.1 0.01 0.001 i c , collector current (amps) t j = 125 c t j = -20 c v ce , voltage (volts) v ce , voltage (volts) 1 i c /i b = 10 t j = 125 c t j = -20 c i c /i b = 20 4 a 3 a 2 a t j = 25 c t j = 25 c t j = 25 c 1
MJE18004D2 http://onsemi.com 5 typical static characteristics figure 7. baseemitter saturation region 10 1 0.1 10 0.1 0.01 0.001 i c , collector current (amps) figure 8. baseemitter saturation region 10 1 0.1 10 0.1 0.01 0.001 i c , collector current (amps) t j = 125 c t j = -20 c v be , voltage (volts) v be , voltage (volts) 1 t j = 125 c t j = 25 c t j = -20 c i c /i b = 10 1 i c /i b = 5 figure 9. baseemitter saturation region 10 1 0.1 10 0.1 0.01 0.001 i c , collector current (amps) figure 10. forward diode voltage 10 1 0.1 10 0.1 0.01 reverse emitter-collector current (amps) 125 c 25 c v be , voltage (volts) forward diode voltage (volts) t j = 125 c t j = -20 c 1 i c /i b = 20 figure 11. capacitance 1000 10 100 10 1 v r , reverse voltage (volts) c, capacitance (pf) 100 c ib (pf) c ob t j = 25 c f (test) = 1 mhz figure 12. bvcer = f(r be ) 1200 600 1000 100 10 base-emitter resistor ( w ) collector emitter voltage (volts) t c = 25 c bvcer @ icer = 10 ma 1000 800 bvcer(sus) @ icer = 200 ma, lc = 25 mh 1 t j = 25 c t j = 25 c
MJE18004D2 http://onsemi.com 6 typical switching characteristics figure 13. resistive switch time, t on 3200 0 4 2 1 i c , collector current (amps) 3 t, time (ns) 2400 1600 800 t j = 125 c t j = 25 c i c /i b = 10 i c /i b = 5 i bon = i boff v cc = 300 v pw = 20 m s figure 14. resistive switch time, t off 5 2 0 4 3 1 i c , collector current (amps) figure 15. inductive storage time, t si @ i c /i b = 5 4 2 0 4 1 0 i c , collector current (amps) 3 3 1 3 t, time (s) m t, time (s) m 4 1 t j = 125 c t j = 25 c i c /i b = 10 i c /i b = 5 i bon = i boff v cc = 300 v pw = 20 m s 2 t j = 125 c t j = 25 c i bon = i boff v cc = 15 v v z = 300 v l c = 200 m h figure 16. inductive storage time, t si @ i c /i b = 10 2 i c /i b = 5 4 2 0 4 1 0 i c , collector current (amps) 3 3 1 t, time (s) m 2 t j = 125 c t j = 25 c i bon = i boff v cc = 15 v v z = 300 v l c = 200 m h i c /i b = 10 figure 17. inductive switching time, t c and t fi @ i c /i b = 5 1000 0 4 1 0 i c , collector current (amps) 3 t, time (ns) 800 600 200 t j = 125 c t j = 25 c 400 2 i bon = i boff v cc = 15 v v z = 300 v l c = 200 m h i c /i b = 5 figure 18. inductive switching time, t fi @ i c /i b = 10 1000 0 4 1 0 i c , collector current (amps) 3 t, time (ns) 800 600 200 t j = 125 c t j = 25 c 400 2 i boff = i bon v cc = 15 v v z = 300 v l c = 200 m h i c /i b = 10 t c t fi
MJE18004D2 http://onsemi.com 7 , storage time ( t si m s) typical switching characteristics figure 19. inductive switching, t c @ i c /i b = 10 1600 800 0 4 2 0 i c , collector current (amps) t, time (ns) 1200 t j = 125 c t j = 25 c 400 13 i c /i b = 10 i boff = i bon v cc = 15 v v z = 300 v l c = 200 m h figure 20. inductive storage time 5 2 20 0 h fe , forced gain 4 3 51015 t j = 125 c t j = 25 c i c = 2 a i bon = i boff v cc = 15 v v z = 300 v l c = 200 m h i c = 1 a figure 21. inductive fall time 1000 0 20 8 2 h fe , forced gain figure 22. inductive crossover time 2000 500 0 20 8 2 h fe , forced gain 1500 1000 600 t fi , fall time (ns) t c , crossover time (ns) 800 400 200 4 6 10 12 t j = 125 c t j = 25 c i boff = i bon v cc = 15 v v z = 300 v l c = 200 m h 14 i bon = i boff v cc = 15 v v z = 300 v l c = 200 m h t j = 125 c t j = 25 c 14 16 18 i c = 1 a i c = 2 a i c = 2 a i c = 1 a figure 23. inductive storage time, t si 4 2 1 4 0.5 i c , collector current (amps) 1.5 1 i bon = i boff v cc = 15 v v z = 300 v l c = 200 m h 3 t, time (s) m 2 2.5 3 3.5 i b = 50 ma i b = 100 ma i b = 200 ma i b = 500 ma i b = 1 a figure 24. forward recovery time, t fr 420 300 2 1 0.5 0 i f , forward current (amp) di/dt = 10 a/ m s t c = 25 c 1.5 t fr , forward recovery time (ns) 380 340
MJE18004D2 http://onsemi.com 8 10 4 0 8 2 06 8 6 2 4 9 7 5 3 1 13 5 7 i b i c v clamp t si t c t fi 90% i c 10% i c 90% i b1 10% v clamp v ce 0 v i b 90% i b 1 m s 3 m s dyn 1 m s dyn 3 m s figure 25. dynamic saturation voltage measurements time volts figure 26. inductive switching measurements typical switching characteristics figure 27. t fr measurements 0 10 6 0 v f i f 28 4 v fr (1.1 v f unless otherwise specified) v frm t fr v f 0.1 v f 10% i f time
MJE18004D2 http://onsemi.com 9 typical switching characteristics table 1. inductive load switching drive circuit v (br)ceo(sus) l = 10 mh rb2 = v cc = 20 volts i c(pk) = 100 ma inductive switching l = 200 m h rb2 = 0 v cc = 15 volts rb1 selected for desired ib1 rbsoa l = 500 m h rb2 = 0 v cc = 15 volts rb1 selected for desired ib1 +15 v 1 m f 150 w 3 w 100 w 3 w mpf930 +10 v 50 w common -v off 500 m f mpf930 mtp8p10 mur105 mje210 mtp12n10 mtp8p10 150 w 3 w 100 m f i out a 1 m f r b2 r b1 i c peak v ce peak v ce i b i b 1 i b 2 typical characteristics figure 28. forward bias safe operating area 100 0.01 1000 10 v ce , collector-emitter voltage (volts) figure 29. reverse bias safe operating area 6 2 0 1000 200 v ce , collector-emitter voltage (volts) 4 100 600 1 0.1 i c , collector current (amps) i c , collector current (amps) dc 5 ms 1 ms 10 m s 1 m s extended soa 3 1 0 v -1.5 v -5 v t c 125 c gain 5 l c = 2 mh 10 5 400 800
MJE18004D2 http://onsemi.com 10 typical characteristics power derating factor figure 30. forward bias power derating there are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. safe operating area curves indicate i c v ce limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate. the data of figure 28 is based on t c = 25 c; t j (pk) is variable de- pending on power level. second breakdown pulse limits are valid for duty cycles to 10% but must be derated when t c > 25 c. second breakdown limitations do not derate the same as thermal limitations. allowable current at the voltages shown on figure 28 may be found at any case temperature by using the appropriate curve on figure 30. t j (pk) may be calculated from the data in figure 31. at any case temperatures, thermal limitations will reduce the power that can be handled to values less than the limita- tions imposed by second breakdown. for inductive loads, high voltage and current must be sustained simultaneously during turnoff with the basetoemitter junction reverse biased. the safe level is specified as a reversebiased safe operating area (figure 29). this rating is verified under clamped conditions so that the device is never subjected to an avalanche mode. t c , case temperature ( c) 1.0 0.8 0.6 0.4 0.2 0 160 140 120 100 80 60 40 20 second breakdown derating thermal derating figure 31. typical thermal response (z q jc(t) ) for MJE18004D2 typical thermal response 1 0.01 10 0.1 0.01 t, time (ms) 0.1 1 100 1000 r(t), transient thermal resistance (normalized) r q jc (t) = r(t) r q jc r q jc = 2.5 c/w max d curves apply for power pulse train shown read time at t 1 t j(pk) - t c = p (pk) r q jc (t) p (pk) t 1 t 2 duty cycle, d = t 1 /t 2 0.05 single pulse 0.5 0.2 0.1 0.02
MJE18004D2 http://onsemi.com 11 package dimensions case 221a09 issue aa to220ab notes: 1. dimensioning and tolerancing per ansi y14.5m, 1982. 2. controlling dimension: inch. 3. dimension z defines a zone where all body and lead irregularities are allowed. dim min max min max millimeters inches a 0.570 0.620 14.48 15.75 b 0.380 0.405 9.66 10.28 c 0.160 0.190 4.07 4.82 d 0.025 0.035 0.64 0.88 f 0.142 0.147 3.61 3.73 g 0.095 0.105 2.42 2.66 h 0.110 0.155 2.80 3.93 j 0.018 0.025 0.46 0.64 k 0.500 0.562 12.70 14.27 l 0.045 0.060 1.15 1.52 n 0.190 0.210 4.83 5.33 q 0.100 0.120 2.54 3.04 r 0.080 0.110 2.04 2.79 s 0.045 0.055 1.15 1.39 t 0.235 0.255 5.97 6.47 u 0.000 0.050 0.00 1.27 v 0.045 --- 1.15 --- z --- 0.080 --- 2.04 b q h z l v g n a k f 123 4 d seating plane t c s t u r j style 1: pin 1. base 2. collector 3. emitter 4. collector
MJE18004D2 http://onsemi.com 12 on semiconductor and are registered trademarks of semiconductor components industries, llc (scillc). scillc reserves the right to mak e changes without further notice to any products herein. scillc makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does scillc assume any liability arising out of the application or use of any product or circuit, and s pecifically disclaims any and all liability, including without limitation special, consequential or incidental damages. atypicalo parameters which may be provided in scillc data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. all operating parameters, including atypicalso must be validated for each customer application by customer's technical experts. scillc does not convey any license under its patent rights nor the rights of others. scillc products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body , or other applications intended to support or sustain life, or for any other application in which the failure of the scillc product could create a sit uation where personal injury or death may occur. should buyer purchase or use scillc products for any such unintended or unauthorized application, buyer shall indem nify and hold scillc and its of ficers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and re asonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized u se, even if such claim alleges that scillc was negligent regarding the design or manufacture of the part. scillc is an equal opportunity/affirmative action employ er. publication ordering information japan : on semiconductor, japan customer focus center 4321 nishigotanda, shinagawaku, tokyo, japan 1410031 phone : 81357402700 email : r14525@onsemi.com on semiconductor website : http://onsemi.com for additional information, please contact your local sales representative. MJE18004D2/d literature fulfillment : literature distribution center for on semiconductor p.o. box 5163, denver, colorado 80217 usa phone : 3036752175 or 8003443860 toll free usa/canada fax : 3036752176 or 8003443867 toll free usa/canada email : onlit@hibbertco.com n. american technical support : 8002829855 toll free usa/canada


▲Up To Search▲   

 
Price & Availability of MJE18004D2

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X